

Tetrahedron Letters 46 (2005) 1667-1669

Tetrahedron Letters

Use of CaH₂ as a reductive hydride source: reduction of ketones and imines with CaH₂/ZnX₂ in the presence of a Lewis acid

Toshio Aida, Norikatsu Kuboki, Kenji Kato, Wataru Uchikawa, Chikashi Matsuno and Sentaro Okamoto*

Department of Applied Chemistry, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan

Received 10 December 2004; revised 11 January 2005; accepted 13 January 2005

Available online 28 January 2005

Abstract—A new combination reagent of CaH_2/ZnX_2 effectively reduced a variety of ketones and imines to the corresponding alcohols and amines, respectively, in the presence of a catalytic amount of a Lewis acid such as $Ti(O-i-Pr)_4$, $Al(O-i-Pr)_3$, $B(O-i-Pr)_3$ and ZnF_2 .

© 2005 Published by Elsevier Ltd.

Reduction with metal hydride reagents has been widely utilized as a routine protocol in organic synthesis and numerous hydride compounds and reagent systems have been developed and are used. Recently, efforts have been made to utilize LiH as a hydride source, which is a basically inert metal hydride, inexpensive, stable to handle and environmentally benign. Thus, in 1994 Noyori and co-workers demonstrated that LiH could be used as an agent for carbonyl reduction in the presence of TMSCl and a catalytic amount of ZnX₂. At the same time, Sato and co-workers showed that reaction of alkynes or conjugated dienes with ZnI₂/2LiH reagent underwent hydrometallation in the presence of Cp₂TiCl₂.² Generation of dialkylzinc hydride ate complexes from LiH and ZnR₂ has been also reported.³ These results prompted us to investigate use of CaH₂ as a reductive hydride source, which is also a basically inert, inexpensive and stable metal hydride and is usually used as a drying agent. Herein we report that a reagent combination of CaH₂ and ZnX₂ reduces effectively ketones and imines to the corresponding alcohols and amines in the presence of a catalytic amount of a Lewis acid.

To investigate the possibility of the use of CaH₂ as a reductive hydride source, we carried out the reactions of acetophenone (1a) and an imine 2a derived from benzaldehyde and benzyl amine with CaH₂ and ZnX₂

Keywords: Calcium hydride; Reduction.

under various reaction conditions (Table 1).^{4,5} Thus, a mixture of CaH₂ (powder, 1.3 mmol) and anhydrous ZnX₂ (0.2–1.4 mmol) in THF (3 mL) was stirred at room temperature or 40 °C for 1.5 h. To this were added a solution of ketone **1a** or the imine **2a** (1.0 mmol) in THF (1 mL) and the additive. The resulting mixture was stirred for 12 h at room temperature or 40 °C.

As revealed from Table 1, it was found that CaH₂ could act as a reductive hydride source: with a 1.3:1.4 mixture of CaH₂ and ZnBr₂, a trace amount of 3a was obtained by the reaction of 1a (entry 1) and imine 2a was effectively reduced to amine 4a (entry 9). However, a 1.3:1.2 mixture of CaH₂ and ZnBr₂ did not reduce 1a and 2a at all (entries 2 and 10). CaH₂ in the presence of a catalytic amount of ZnBr₂ and a stoichiometric amount of TMSCl reduced 1a in THF; however, the reaction did not complete (entry 3). We found that in the presence of a catalytic amount of Ti(O-i-Pr)₄ an essentially inert 1.3:1.2 mixture of CaH₂ and ZnX₂ could reduce 1a and 2a quantitatively to afford 3a and 4a, respectively (entries 5–7 and 11), where ZnCl₂, ZnBr₂, ZnI₂ could be used equally. However, the reaction with ZnF₂ did not proceed at all (entry 8).

With these results, we studied the stoichiometry of CaH_2 and ZnX_2 in the reaction. As can be seen from Eq. 1, it was found that the reduction was stoichiometric on both CaH_2 and ZnX_2 : thus, a 2:1 and 1:1 mixture of CaH_2 and $ZnBr_2$ reduced $\mathbf{1a}$ in a stoichiometric fashion to the amount of $ZnBr_2$. However, a 1:2 mixture of CaH_2 and $ZnBr_2$ was nearly inert.

^{*}Corresponding author. Tel.: +81 45 481 5661; fax: +81 45 413 9770; e-mail: okamos10@kanagawa-u.ac.jp

Table 1. a

$$\begin{array}{c} & CaH_2 \ (1.3 \ equiv) \\ X \\ Ph \\ R \\ \hline & additive \\ THF, r.t \sim 40 \ ^{\circ}C \\ \hline \textbf{1a:} \ X = O, \ R = Me \\ \textbf{2a:} \ X = N \cdot Bn, \ R = H \\ \end{array} \begin{array}{c} X \\ Additive \\ THF, r.t \sim 40 \ ^{\circ}C \\ \textbf{12 h} \\ \textbf{4a:} \ X = O, \ R = Me \\ \textbf{4a:} \ X = N \cdot Bn, \ R = H \\ \end{array}$$

Entry	Substrate	ZnX ₂ (equiv)	Additive (mol%)	Product Yield ^b , %		Recovered 1 or 2^b , %
1	1a	ZnBr ₂ (1.4)	_	3a	<5	~90%
2	1a	$ZnBr_{2}$ (1.2)	_	3a	0	Quant
3	1a	$ZnBr_{2}(0.2)$	TMSCl (150)	3a	$40^{\rm c}$	60°
4 ^d	1a	$ZnBr_{2}(0.2)$	TMSCl (150)	3a	0^{c}	Quant ^c
5	1a	$ZnBr_{2}$ (1.2)	$Ti(O-i-Pr)_4$ (5)	3a	Quant	0
6	1a	$ZnCl_2$ (1.2)	$Ti(O-i-Pr)_4$ (5)	3a	Quant	0
7	1a	ZnI_{2} (1.2)	$Ti(O-i-Pr)_4$ (5)	3a	Quant	0
8	1a	ZnF_{2} (1.2)	$Ti(O-i-Pr)_4$ (5)	3a	0	Quant
9	2a	$ZnBr_{2}(1.4)$		4a	Quant	0
10	2a	$ZnBr_{2}(1.2)$	_	4a	0	Quant
11	2a	$ZnBr_2(1.2)$	Ti(O- <i>i</i> -Pr) ₄ (5)	4a	Quant	0

^a The reactions were performed at 40 °C except for entries 3 and 4 (room temperature).

CaH₂/ZnBr₂

Ph 1a

Ti(O-
$$\dot{i}$$
-Pr)₄ (5 mol%)

THF, 40 °C 12 h

Me

3a

equiv.

CaH₂ ZnBr₂ yield, %

1.3 0.6 57

0.6 1.2 8

0.6 0.6 61

The results shown in Table 1 and Eq. 1 may be explained by the following assumptions: (i) CaH₂ and ZnX₂ except for ZnF₂ can make a complex(es) in a 1:1 ratio when one or more equivalent of CaH₂ was mixed with ZnX₂. A 1:2 mixture of CaH₂ and ZnX₂ may make a different species. (ii) A 1:1 complex(es) of CaH₂ and ZnX₂ thus generated is essentially inert for reduction of ketones and imines. Ti(O-*i*-Pr)₄ may act as a Lewis acid activating the substrates in a catalytic manner to undergo the reduction with a CaH₂/ZnX₂ (1:1) reagent.⁶

Based on these hypotheses we carried out the reaction with other Lewis acid catalysts (Table 2). As expected, in addition to Ti(O-*i*-Pr)₄ other metal alkoxides (5 mol%) such as Al(O-*i*-Pr)₃ and B(O-*i*-Pr)₃ could effectively catalyze the reduction of **1a** and **2a** with CaH₂/ZnBr₂ (1.3:1.2). Similarly, ZnF₂ catalyzed the reduction of ketone and imine (entries 4 and 8).

With these results in hand, we chose a reagent system CaH₂/ZnBr₂/Ti(O-*i*-Pr)₄ (1.3:1.2:0.05) and carried out the reduction of other ketones and imines.⁷ The results of the reactions with the representative carbonyl compounds and imines are summarized in Tables 3 and 4, respectively.

Table 2.

$$\begin{array}{c} \text{CaH}_2 \text{ (1.3 equiv)} \\ \text{ZnBr}_2 \text{ (1.2 equiv)} \\ \text{additive (5 mol\%)} \\ \text{Ph} \\ \text{R} \\ \end{array} \begin{array}{c} \text{THF, 40 °C 12 h} \\ \text{Ph} \\ \text{R} \\ \end{array} \begin{array}{c} \text{Y} \\ \text{Ph} \\ \text{R} \\ \end{array}$$

Entry	Substrate	Additive	Product	
			Yield, % a	
1	Ketone 1a	Ti(O-i-Pr) ₄	3a	Quant (92) ^b
2	1a	$Al(O-i-Pr)_3$	3a	Quant
3	1a	$B(O-i-Pr)_3$	3a	Quant
4	1a	ZnF_2	3a	Quant
5	Imine 2a	Ti(O-i-Pr) ₄	4a	Quant (86) ^b
6	2a	$Al(O-i-Pr)_3$	4a	Quant
7	2a	$B(O-i-Pr)_3$	4a	78 ^c
8	2a	ZnF_2	4a	Quant

^a Unless otherwise indicated, yields were determined by ¹H NMR analysis of the crude residue using an internal standard.

As revealed from Table 3, diaryl and aryl alkyl ketones and cyclic ketones could be effectively reduced. Aldehydes and acyclic aliphatic ketones, however, were not good substrates. As shown in entries 1 and 5, ZnCl₂ as well as ZnBr₂ could be equally used for the reduction.

^b Yields were determined by ¹H NMR analysis of the crude residue using an internal standard.

^c Elongation of the reaction time (48 h) did not improved the yield.

^d The reaction was carried out in toluene.

^b Isolated yield.

c 22% of 2a was recovered.

Table 3.

$$\begin{array}{c} O \\ R^{1} \\ R^{2} \end{array} \xrightarrow{ \begin{array}{c} CaH_{2}/ZnBr_{2}/Ti(O-\dot{r}Pr)_{4} \\ (1.3:1.2:0.05) \\ \end{array} } \begin{array}{c} OH \\ R^{1} \\ R^{2} \end{array}$$

Entry	\mathbb{R}^1	R^2	Yield of 3 ^a , %
1	Ph	n-Bu	86 (85) ^b
2	Ph	Ph	90
3	p-BrC ₆ H ₄	CH_3	92
4	p-MeOC ₆ H ₄	CH_3	90
5	$-(CH_2)_7$	_	91 (91) ^b
6	$-(CH_2)_5$	_	$38^{c,d}$
7	$CH_3(CH_2)_6$	CH_3	Trace ^c
8	Ph	H	Complex mixture ^c

^a Isolated yield unless otherwise indicated.

Table 4.

$$\begin{array}{c} \text{N} \cdot \text{R}^2 \\ \text{R}^1 \\ \text{R}^3 \\ \textbf{2} \end{array} \xrightarrow{\begin{array}{c} \text{CaH}_2/\text{ZnBr}_2/\text{Ti}(\text{O-i-$Pr})_4 \\ \text{(1.3:1.2:0.05)} \\ \text{THF, 40 °C} \end{array}} \begin{array}{c} \text{HN} \cdot \text{R}^2 \\ \text{R}^1 \\ \textbf{4} \end{array}$$

Entry	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3	Yield of 4a, %
1	Ph	Bn	Н	86 (85) ^b
2	Ph	n-Pr	Н	83
3	Ph	Ph	Н	92 (90) ^b
4	p-BrC ₆ H ₄	Bn	Н	91
5	2-Furyl	Bn	Н	85
6	(E)-PhCH=CH	$CH_2CH=CH_2$	Н	81
7	$n-C_5H_{11}$	Bn	Н	84
8	Ph	Bn	CH_3	91

^a Isolated yield.

The reduction of benzil by the present method provided *meso*-hydrobenzoin exclusively (Eq. 2). The stereoselectivity can be explained by considering the chelation control mechanism similar to that proposed for the reduction with other metal hydrides.

As listed in Table 4, a CaH₂/ZnX₂/Ti(O-*i*-Pr)₄ (1.3:1.2:0.05) reagent could reduce a variety of imines in excellent yields. Thus, imines derived from aromatic and aliphatic aldehydes were cleanly converted to the corresponding amines. Imines having a benzyl, alkyl, or aromatic group as an *N*-substituent were good substrates. Functional groups such as bromo and alkenyl moieties present in the substrate were tolerant as shown in entries 4 and 6. Ketimine was also reduced in excellent yield (entry 8). ZnCl₂ was again found to be equally effective as ZnBr₂ (entries 1 and 3).

In summary, herein we have reported that CaH₂ could be used as a reductive hydride source together with ZnX₂ and a catalytic amount of a Lewis acid, the reagent system of which could perform the reduction of ketones and imines to the corresponding alcohols and amines in good yield. To our knowledge, this is the first example of a CaH₂-based reduction of organic molecules except for those through boron hydride formation and reduction of sulfate to sulfide.^{8,9}

Acknowledgments

We thank the Ministry of Education, Culture, Sports, Science and Technology (Japan) for financial support.

References and notes

- Ohkuma, T.; Hashiguchi, S.; Noyori, R. J. Org. Chem. 1994, 59, 217.
- Gao, Y.; Urabe, H.; Sato, F. J. Org. Chem. 1994, 59, 5521;
 Gao, Y.; Harada, K.; Hata, T.; Urabe, H.; Sato, F. J. Org. Chem. 1995, 60, 290.
- Uchiyama, M.; Furumoto, S.; Saito, M.; Kondo, Y.; Sakamoto, T. J. Am. Chem. Soc. 1997, 119, 11425.
- CaH₂ (powder), anhydrous ZnCl₂, ZnBr₂, ZnI₂ and ZnF₂ were purchased from Wako Pure Chemical Industries, Ltd.
- Under similar conditions the reaction of CaH₂ with MgBr₂ in the presence or absence of Ti(O-i-Pr)₄ did not reduce 1a at all.
- 6. Although formation of metal hydrides derived from Ti(O-i-Pr)₄, B(O-i-Pr)₃ or Al(O-i-Pr)₃ cannot be ruled out, the fact that ZnF₂, which was inert in the presence of Ti(O-i-Pr)₄, was an effective catalyst as well as Ti(O-i-Pr)₄ and activated the reaction with CaH₂/ZnBr₂ (1.3:1.2) may suggest a role of these metal alkoxide as a Lewis acid. In addition, the reaction of 1a and CaH₂ (1.3 equiv) with 1.3 equiv of Ti(O-i-Pr)₄, B(O-i-Pr)₃ or Al(O-i-Pr)₃ in the absence of ZnX₂ did not proceed at all.
- 7. General procedure: a suspension of CaH₂ (1.3 mmol) and ZnX₂ (1.2 mmol) in THF (3 mL) was stirred for 1.5 h at 40 °C. To this were added a solution of ketone or imine (1.0 mmol) in THF (1 mL) and Lewis acid (0.05 mmol). The resulting mixture was stirred for 12 h at 40 °C. After being cooled to room temperature, the mixture was slowly poured into aqueous saturated NH₄Cl. The mixture was extracted with ether or AcOEt, dried over MgSO₄ and concentrated.
- 8. It has been reported that CaH₂ and B(OMe)₃ gave a complex at 215 °C, which reduced carbonyl compounds: Hesse, Gerhard; Jager; Horst *Chem. Ber.* **1959**, *92*, 2022; Formation of B₂H₆ by the reaction of CaH₂ and BF₃ at 120 °C has been reported: Mikheeva, V. I.; Fedneva, E. M.; Alpatova, V. I. *Dok. Akad. Nauk SSSR* **1959**, *131*, 318; Formation of Ca(BH₄)₂ from CaH₂ and Et₃NBH₃ has been reported: Koester, R; Huber, H. *Inorg. Synth.* **1977**, *17*, 17.
- Caldwell, W. E.; Krauskopf, F. C. J. Am. Chem. Soc. 1929, 51, 2936.

^b ZnCl₂ was used instead of ZnBr₂.

^c Determined by ¹H NMR analysis of the crude residue using an internal standard.

d 62% of 1 was recovered.

^b ZnCl₂ was used instead of ZnBr₂.